
 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

SharkFest ‘16

Wireshark 2.0 Tips for HTTP 1/2 Analysis:
Goodies about New Wireshark and Packet
Analysis for HTTP

Megumi Takeshita
Packet Otaku | ikeriri network service co.,ltd

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Megumi Takeshita, ikeriri network service

a.k.a. packet otaku since first Sharkfest

2

• Founder, ikeriri network service co.,ltd

• Wrote 10+ books of Wireshark and capturing

and network analysis.

• Reseller of Riverbed Technology (former

CACE technologies) and Metageek,

Dualcomm etc. in Japan

• Attending all Sharkfest 9 times

• and translator of QT Wireshark into

Japanese

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

21 Wireshark 2.0 Tips for HTTP 1/2 Analysis:

Goodies about New Wireshark and Packet

Analysis for HTTP

•This session contains TIPS and TRICKs

for HTTP 1 / 2 using Wireshark 2.0,

and also includes HTTP and HTTP2 analysis

 for packet analysis beginners.

•Limited English skills,

so please ask me if you have some question.

3

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

sample trace files in the session you can download

Download: http://www.ikeriri.ne.jp/wireshark/traces/

At first, open the homepage.pcap

The trace file is just open the simple website

 http://www.ikeriri.ne.jp/sample.html

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #1 first, check arrows and colors of the frame

and the intelligent scroll bar

•New Wireshark tell you traffic with arrow and color of the

scroll bar. It tells us the traffic

DNS

TCP

Color of the scroll bar

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #2 Generated fields and links tell us the

important information
•There are two kinds of fields in Wireshark header,
 the actual field like Web Server (http.server) in HTTP header,

 the generated field (easily to find [generated field name]) that

 Wireshark created for understanding the packet.

 Some generated fields have a link to jump the corresponding frame.

Actual header (HTTP Server field)

Generated field (Wireshark counts response number (http.response_number))

Generated field (Wireshark calculate http response time (http.time))

Generated field and Link (Wireshark set link to the http request frame)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

We can use generated fields as actual fields in

I/O graph, display filter, etc. Generated Fields can be used

as the index of the I/O Graph,

Display filter string and the other

of Wireshark.

For example, there are two

generated fields, http.time (

Wireshark calculates time

between HTTP request and

response) and dns.time

(between DNS query and

response)

so you can easily compare the

web speed (blue bar) versus

dns speed (red bar)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #3 HTTP statistics tell us the scale and the

TURN(LOOP) of the whole Web traffic.

•HTTP statistics contains important

information of HTTP trends

•Packet counter shows HTTP packets

by the request method and by the

response code, and shows subtotal of

the each method and code in details. so

we can grab the scale and the TURNs

of the certain web traffic,

Request/Response Counts

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/1.1 TURN=Request Response Loop

Web
Browser

Web
Server

HTTP Request

GET /sample.html HTTP/1.1

HTTP Response

HTTP/1.1 200 OK

Connection: keep-alive

• HTTP/1.1 has a Connection header,

Server response with Connection: keep-alive

 so you can re-use the same connection.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Bulk transfer webpage Interactive access webpage

Bulk transfer runs
faster than
interactive design
website.
Just think of
RTT x TURNs

Get one image map file
using HTTP 1.1 (1 request

Get some Small icon file
(icon1.jpg, icon2.jpg) using
HTTP 1.1

Bulk transfer vs interactive access of webpage

Client

Request1

Response1

Request2

Response2

Server

Request3

Response3

Client

Request1

Response1

(TCP1/3)

Server

Response1

(TCP2/3)

Response1

(TCP3/3)

R
T
T

R
T
T

R
T
T

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Test trace file: PrimeMinisterJapan.pcapng

Next please open the another trace file

PrimeMinisterJapan.pcapng

the trace file contains HTTP1.1

packets the user open the website

http://www.kantei.go.jp

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Compare Counts and grab the efficiency and

speed and scale of webpage
ikeriri.pcapng
http://www.ikeriri.ne.jp/

Less Requests
Less Response
Less TURNs * RTT
Simple homepage

19 Request GET

23 Response
19 Response 200 OK
1 404 Client Error
3 2xx Redirection

PrimeMinisterJapan.pca
png
http://www.kantei.go.jp/

More Requests
More Response
More TURNs * RTT
Complicated homepage

144 Request GET

144 Response
2 Redirection
142 Response 200 OK

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Sort the HTTP counts

by Percent tells us the ratio of request/response,

by Rate(ms) tells us the slow point (3xx redirect),

by Burst rate tells us the congestion point of traffic
Burst = the

maximum number of

packets sent per

interval of time

Burst start = the

time when the

maximum number of

packets sent

occurred

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #4 Export Objects function is useful in retrieving

Web contents from packet (not from cache).

•If you want to get the original

web content from the packet,

you use “export Objects > HTTP”

from file menu.

•Wireshark made lists of web

contents with packet number,

host name, content type, size

and file name.

•You can save them all or each.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Sort the objects by the size, you know which contents

need the transfer time.

•“export Objects > HTTP”

from file menu and save

all to the temporal folder.

•Sort the objects in

explorer by size, and

check which one is the

biggest.

•Some HTTP uses

compression mechanism

so sometimes actual

traffic is smaller.

“20130128headline..” JPEG file 95kb and
“Jquery-1.7.1.min.js” Java script 95kb take times.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #5 to understand HTTP request and

response loop, use the “follow TCP stream”

 •“Follow TCP Stream” function sorts TCP stream from both

client and server side, so we can look a series of HTTP

communication at a glance

•Follow TCP Stream is just a simple.

 select TCP packet (any frame

 you want to look into the socket)

 and right clik then select

 “Follow TCP Stream”

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/1.1 message format

17

GET / HTTP/1.1

User-Agent: Safari

Host: www.ikeriri.ne.jp

Accept: */*

HTTP/1.1 200 OK

Content-Length: 44

Content-Type: text/html

<html><body>

<h1>Sample</h1>

</body></html> CR+LF

Status Code

CR+LF

Method HTTP Request HTTP Response

CR/LF separates between HTTP

header and body (two CR/LF appears.)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

if you failed to select the target stream, no problem,

press up and down to select the stream forward

and backward in the follow

TCP/UDP/SSL screen.

Wireshark set the number of

stream as generated field,

we can handle the stream as

tcp.stream, udp.stream, ssl.stream

input stream number or press up or
down arrow to serlect the stream

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

How to grab Follow TCP Stream

Select HTTP headers

between beginning and

blank CR/LF

HTTP response usually has

the body, select

from fisrt blank to the end.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #6 memorize major request method

 Method Mean

CONNECT Tunneling the other tcp connection over HTTP

DELETE Deleting Objects (used by WebDAV)

GET Give me the content with some order

(?para1=val1¶2=val2&…)

Not secure than POST because the URI and message are

combined and recorded by Referrer header.

Usually order message is small and not important.

HEAD Give me only the HEADER of the content

OPTIONS Check the method web server accepts.

POST Sending information with body (secure)

Message send as the body part of the request.

Post message is secure and able to send much data

PUT Uploading Objects (used by WebDAV)

TRACE Check proxy sever by displaying request message,

Used with “Max-Forwards” header

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

You can test the method by telnet client with port 80

• You can test the methods by

telnet with TCP port 80

• Recommend “set localecho”

because your typing is directly

sent and not displayed. And you

cannot modify the typing.

• Blank line needs two Enter key

pressing (CR/LF, and blank

CR/LF)

• Example: OPTIONS * HTTP/1.0

• Sometimes web server is not

accepted because security reason.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #7 memorize major response code

Code type Description

1xx Information Temporal information for the client web browser
2xx Success Your request is OK. I send the response.
3xx Redirection The object was moved., I tell you new address with

the location header,
so please send the request again with new URI

4xx Client error Your error caused from web browser
5xx Server error My error caused from web server

•Response code is important for the understanding the HTTP response

•Response codes are 3 digits and categorized by the hundred number

digit, so you may memorize 5 types of the response.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

code message description
100 Continue You can continue to send the rest of the request.

(Large data request)
101 S w i t c h i n g

Protocols
Web browser send request with “Upgrade:” header
Then Web server answers OK to switch protocol.
(Used by starting process of HTTP/2.0 connection)

Famous response code (1xx)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

code message 説 明
200 OK OK, I send the response.
201 Created I created the content. (send back to PUT method and

used by WebDAV)
202 Accepted Accepted, please continue the rest, (usually accepted

PUT method)
203 Non Authoritative

Information
I received your request, but I have no authority of the
content. (Proxy server says)

204 No Content I received your request, but there are no content.
205 Reset Content Please reset the content (used with input form of web

page)
206 Partial Content I send the partial content for your partial get method

Famous response code (2xx)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Code Message Description

３００ Multiple Content The contents locates in many other places. Web server says
the list of the locations.

３０１ Moved Permamently The content was moved and please go to the new URI with
Location header

３０２ Found The URI is ok but please go to the new address with
Location header.

３０４ Not Modified The content is not modified so you don’t have to get the
content, you may use the cache of the web browser.

３０５ Use Proxy Please use the specified proxy server.

３０７ Temporary Redirect The content was located in another URI temporally, so
please go to the new URI with Location header.

Famous response code (3xx)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Code Message Description
400 Bad Request The request message from the web browser is not corrected or

wrong, sometimes it occurs when the web server is attacked.
401 Unauthorized You need the authentication with basic auth or digest auth.

web browser show up the authentication screen.
403 Forbidden Authentication was failed.
404 Not Found The web page is not found.
405 Method Not Allowed The method the client browser sent is not permitted.
407 Proxy Authent ica t i on

Requred
You need proxy server authentication.

411 Length Required You need to send request with Content-Length header
413 Request Entity Too Large The size of request is exceeded. It occurs POST message is

too large.
414 Request URI Too Long The URI is too long to accept. It occurs the length of the GET

request is oversize

Famous response code (4xx)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Code message Description
500 Internal Server Error Web server cannot respond to the client browser

because server side problem (such as Java, CGI, PHP).
501 Not Implemented The method client sent is not implemented.
502 Bad Gateway Proxy server receives the error from the origin server or

another relay proxy.
503 Service Unavailale Web server could not process the request message,

commonly it happens when web server is heavy load,
tons of access or high stress.

Famous response code (5xx)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Example1

homepage.pcapng

Access the website

http://www.ikeriri.ne.jp/

sample.html

HTTP request

GET /sample.html HTTP/1.1

HTTP response

HTTP/1.1 200 OK

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Example2

whitehouse.pcapng

Access the website

http://www.whitehouse.gov/

HTTP request

GET / HTTP/1.1

HTTP response

HTTP/1.1 302 Moved Temporally

to change HTTPS

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Example3

basicauth.pcapng

Access the website

http://www.ikeriri.ne.jp/basicauth/

HTTP request/response

(1)GET /basicauth HTTP/1.1

HTTP/1.1 401 Authorization Required

(2)GET /basicauth HTTP/1.1

HTTP/1.1 301 Moved Permanently

(3)GET /basicauth/ HTTP/1.1

HTTP/1.1 200 OK

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #8 tons of HTTP headers so Wireshark helps us

•There are tons of HTTP headers so you cannot memorize them.

•Wireshark helps us understanding HTTP header.

•Select one of HTTP header and look the status bar

•Explanation of the header and display filter will be displayed.

•Some HTTP header

 is used only in request

 (request header)

•Some only in response

 (response header)

•Some is used for end-to-end

 (browser to server)

•Some is used for hop-by-hop

 (proxy to proxy and so on)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Easy to memorize the header symmetric ways

HTTP Request HTTP Response

User-Agent
Web browser information
http.user_agent

Server
Web server information
http.server

Cookie
Send the information
http.cookie

Set-Cookie
Set the information
http.set_cookie

Referrer
The past URI
http.referer

Location
The new URI
http.location

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #9 HTTP/2.0 has already come
•HTTP/1.0 is just designed for simple HTML text and a few

graphic in 1990’s, HTTP/1.1 added connection features.

•Now HTTP is so popular, sending rich data and the basis

of many services.

 HTTP’s Request-response based connection is simple but

 difficult to speed up, so we have to multiplex many TCP

sessions = HTTP

• sessions (4-6 sessions for example)

Web
Browser

Web
Server

HTTP Request

HTTP Response
Web

Browser
Web

Server

HTTP Request

HTTP Response
Web

Browser
Web

Server

HTTP Request

HTTP Response
HTTP Response HTTP Response

Web
Browser

Web
Server

HTTP Request

HTTP Response
HTTP Response HTTP Response

Web
Browser

Web
Server

HTTP Request

HTTP Response

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Test downloading 4-6 files at same time using HTTP

• Please click 4-6 files download link using your browser

such as IE, Chrome, or Safari.
(for example http://www.ikeriri.ne.jp/download/wireshark/developer-guide-a4.pdf)

• Web browser stop downloading when 4-6 sessions at the

same time.

• Please Check sessions

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/1.1 is difficult to speed up

•HTTP request have to send after

previous response has been received.

•Please input display filter in Wireshark

“http.next_request_in” (Next request in

frame in HTTP request)

•HTTP request is always waiting in one

connection. (head line blocking)

Client

Request1

Response1

Request2

Response2

Server

Request3

Response3

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/1.1 is text based, not efficient protocol

•HTTP is text-based application protocol, easy to read,

 but not efficient, ambiguous, and redundant

•HTTP messages are clear texts so they uses more data

and CPU power for dissection.

•Many connection is separated by each other TCP

connection, they work their own TCP rules without HTTP.

GET / HTTP/1.1

User-Agent: Safari

Host: www.ikeriri.ne.jp

Accept: */*

HTTP/1.1 200 OK

Content-Length: 44

Content-Type: text/html

<html><body>

<h1>Sample</h1>

</body></html> CR+LF

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/1.1 -> AJAX -> SPDY -> HTTP/2.0

• AJAX（ Asynchronous JavaScript + XML ）is one of good ways to

speed up HTTP. AJAX preload another contents using JavaScript,

and enrich user experiences.

• Google creates SPDY that extends HTTP/1.1 (SPDY uses same

method, response code, header and message of HTTP/1.1)

• SPDY uses binary frame such as lower layer frame, and once some

header appears, next time SPDY uses index instead of the header

itself, SPDY uses table based code (table-based header

compression)

• SPDY uses stream mechanism for multiplexing, there are many

HTTP communications in one TCP connection

• SPDY is evolved and known as HTTP/2.0 (RFC7540)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 has already come

•In Windows10 age, major Web browser and websites such

as google services including Google Map and Gmail,

Facebook, Twitter, Yahoo and web services are ready.

•HTTP/2.0 uses with TLS and all traffic is encrypted.

•Please run the Chrome, Microsoft Edge, Safari and

 capture major webpage, HTTP2 has already been here.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Please open the test website HTTP/2.0 vs HTTP/1.1

http://http2.loadimpact.com/entry/

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Please open the test website HTTPS vs HTTP

https://www.httpvshttps.com/

Compare load times of the unsecure HTTP and encrypted HTTPS versions of this page. Each test

loads 360 unique, non-cached images (0.62 MB total). For fastest results, run each test 2-3 times in a

private/incognito browsing session.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 uses SSL/TLS so difficult to decode

• HTTP/2.0 works on SSL/TLS

connection in general.

• Decoding HTTP/2.0 is difficult to

read, sometimes you need the

proxy in the middle.

• Open the Chrome and type

chrome://net-internals/#http2

you can see the HTTP/2

sessions

• Wireshark has the dissector of

HTTP2.0 (http2)

https://www.wireshark.org/docs/

dfref/h/http2

https://www.wireshark.org/docs/dfref/h/http2
https://www.wireshark.org/docs/dfref/h/http2
https://www.wireshark.org/docs/dfref/h/http2

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Sample trace file:

akamai-demo.pcapng with ssl.key

• HTTP2 packet is always encrypted to

SSL, so this time we use the sample

of akamai-demo.pcapng with ssl.key

file that describes the pre-master

secret key with SSL session ID.

• So please open the packet,

and select SSL layer and right click,

to choose the protocol preferences.

And set (pre)-Master-secret log file

using Browse button to set ssl.key

• Client web browser: 192.168.0.192

Web server: 23.78.84.108

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP2.0 binary frame

(fixed header field, size and position of each fields)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP2.0 binary frame （RFC7540)

(fixed header field, size and position of each fields)
 +---+

 | Length (24) |

 +---------------+---------------+---------------+

 | Type (8) | Flags (8) |

 +-+-------------+---------------+-------------------------------+

 |R| Stream Identifier (31) |

 +=+===+

 | Frame Payload (0...) ...

 +---+

maximum payload 16383 octets

Length : Payload Size

Type : Type of Frame

Flags : for example END_STREAM END_HEADERS

Stream Identifier : 0-Management Odd-Client Even-Server

 (each connection) incremental use the id

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Major HTTP/2.0 frame type (http2.type)

Type Description http2.type

DATA HTTP/2.0 data 0x0

HEADERS HTTP/2.0 header 0x1

PRIORITY Stream priority 0x2

RST_STREAM Reset stream 0x3

SETTINGS Connection Setting information 0x4

PUSH_PROMISE Server push 0x5

PING Ping 0x6

GOAWAY Finish connection 0x7

WINDOW_UPDATE Update window (receive buffer) 0x8

CONTINUATION Continue information 0x9

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 Statistics

Wireshark has statistic feature of HTTP2

Select Statistics -> HTTP2

Wireshark collect all HTTP2 frames and divided

 by each Type of the frames, and list up with

 count, Rate(ms), Burst rate, and Burst start time

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

SETTING frame （RFC7540)
 +-------------------------------+

 | Identifier (16) |

 +-------------------------------+-------------------------------+

 | Value (32) |

 +---+

SETTING is used in setting up the HTTP 2 connection
 by both client and server
Identifier is Stream no and is set as 0
SETTING frame needs ACK
To reply the setting frame, use ACK flag
And setting connection information such as
 SETTINGS_HEADER_TABLE_SIZE
 SETTINGS_ENABLE_PUSH
 SETTINGS_MAX_CONCURRENT_STREAMS
 SETTINGS_INITIAL_WINDOW_SIZE
 SETTINGS_COMPRESS_DATA

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HEADER frame （RFC7540)
 +---------------+

 |Pad Length? (8)|

 +-+-------------+---+

 |E| Stream Dependency? (31) |

 +-+-------------+---+

 | Weight? (8) |

 +-+-------------+---+

 | Header Block Fragment (*) ...

 +---+

 | Padding (*) ...

 +---+

HEADER frame is used to tell HTTP2 Header information.

Stream Dependency and weight is used to assign stream index and priority.

Header Block Fragment contains HTTP2 header

HTTP2 Header is table based compressed (HPACK) and set as index no.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

DATA frame （RFC7540)
 +---------------+

 |Pad Length? (8)|

 +---------------+---+

 | Data (*) ...

 +---+

 | Padding (*) ...

 +---+

DATA frame contains actual HTTP2 data (HTTP2 body)

Actual HTTP data stores in Data field (http2.data.data)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

RST_Stream frame（RFC7540)

 +---+

 | Error Code (32) |

 +---+

RST_STREAM frame is used when the user want to stop and

reset http2 stream immediately.

RST_STREAM frame type is 3

Error code contains the reason of resetting stream

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 manages communications using Stream mechanism

HTTP/2.0 uses 1 tcp connection and many Stream (virtual

connection channel) that has id and priority

Web
browser server

1 tcp connection used by HTTP/2.0

HTTP/2.0 request

Binary frame

HTTP/2.0 response

Binary frame

Stream

(id 1)

HTTP/2.0 request

Binary frame

HTTP/2.0 response

Binary frame

Stream

(id 2)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Stream based connection management of HTTP/2.0

 = TCP based connection management of HTTP/1.1
 +--------+

 send PP | | recv PP

 ,--------| idle |--------.

 / | | ¥

 v +--------+ v

 +----------+ | +----------+

 | | | send H / | |

 ,------| reserved | | recv H | reserved |------.

 | | (local) | | | (remote) | |

 | +----------+ v +----------+ |

 | | +--------+ | |

 | | recv ES | | send ES | |

 | send H | ,-------| open |-------. | recv H |

 | | / | | ¥ | |

 | v v +--------+ v v |

 | +----------+ | +----------+ |

 | | half | | | half | |

 | | closed | | send R / | closed | |

 | | (remote) | | recv R | (local) | |

 | +----------+ | +----------+ |

 | | | | |

 | | send ES / | recv ES / | |

 | | send R / v send R / | |

 | | recv R +--------+ recv R | |

 | send R / `----------->| |<-----------' send R / |

 | recv R | closed | recv R |

 `----------------------->| |<----------------------'

 +--------+

send: endpoint sends this frame recv:

endpoint receives this frame

H: HEADERS frame

PP: PUSH_PROMISE frame

ES: END_STREAM flag
R: RST_STREAM frame
• Stream mechanism is very

similar to TCP

• HTTP2 Stream have state chart

diagrams like TCP

• Start from idle, connect in

open state, ES(End_Stream)

and end in closed state

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Flows of HTTP2 connection

i. Connect TLS connection between

client and server (with ALPN to

determine protocol and version of

HTTP2)

ii. Server sends SETTINGS and

WINDOW_UPDATE frame

iii. Client sends Magic, SETTINGS,

WINDOW_UPDATE

iv. Client sends HEADERS,

WINDOW_UPDATE

v. Client sends SETTINGS

vi. Server sends SETTINGS

vii. Server sends HEADER, DATA, DATA

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(i) ALPN Application Layer Protocol Negotiation

1. The user use the URL as https://...

 and start up TLS connection

2. When client sends “Client Hello” in

TLS connection, client sends

ALPN information with the list of

protocols client want to use

3. Server respond with “Server Hello”

with ALPN information server

determined to use HTTP2 draft14

https://.../

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Another way to start up HTTP2 connection

HTTP Upgrade (RFC7540)

1. The user the URL as “http://...” and start up HTTP/1.1 connection

2. HTTP request contains “Upgrade” and “HTTP2-Settings” header
GET / HTTP/1.1

Host: server.example.com

Connection: Upgrade, HTTP2-Settings

 Upgrade: h2c

 HTTP2-Settings: <base64url encoding of HTTP/2 SETTINGS payload>

3. Server respond with 101 status code

HTTP/1.1 101 Switching Protocols

 Connection: Upgrade

 Upgrade: h2c

 [HTTP/2 connection ...

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(ii) Server sends SETTINGS and WINDOW_UPDATE frame

After finishing TLS connection

 with ALPN to determine protocol

 and version of HTTP2

Server sends SETTINGS and

 WINDOW_UPDATE frame

SETTING frame contains

 Max concurrent stream

 Initial Windows size

 Max header list size

WINDOW_UPDATE frame contains

 Window Size Increment

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(iii) Client sends Magic, SETTINGS, WINDOW_UPDATE frame

Client sends Magic, SETTINGS,

WINDOW_UPDATE frame

Magic frame contains

“PRI * HTTP/2.0 CR+LF

 CR+LF

 SM

CR+LF, CR+LF

SETTING frame contains

Initial Windows size

Max frame size

WINDOW_UPDATE frame contains

 Window Size Increment

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(iv) Client sends HEADERS, WINDOW_UPDATE frame

Client sends HEADERS,

WINDOW_UPDATE frame

HEADERS frame contains

HTTP2.0 header information

WINDOW_UPDATE frame contains

 Window Size Increment

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HEADERS frame

• method

HTTP method

• path

Path of the object

• authority

Host of the server

• scheme

HTTP / HTTPS

• user-agent:

browser information

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HPACK (table based Header compression)

• HTTP/2.0 doesn’t use the String, but just send the value.
• HPACK uses Huffman encoding,
• HPACK uses static table index that defined common headers.
• HPACK uses header table index that used for history of sent header/value.
• HPACK uses reference set that used for sending the difference from last header.

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(v) Client sends SETTINGS frame

Client sends SETTINGS

frame

SETTINGS frame

contains ACK to the

server’s SETTINGS

frame

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(vi) Server sends SETTINGS frame

Server sends SETTINGS

frame

SETTINGS frame

contains ACK to the

client’s SETTINGS frame

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

(vii) Server sends HEADER, DATA, DATA

Server sends HEADER, DATA, DATA

Frame

HEADERS frame contains

HTTP2.0 header information

DATA frame contains

 HTTP2.0 DATA (body)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 response

HEADERS

 • :status

Status code

• server

web server

• content-type

document type

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

HTTP/2.0 response

DATA

Actual body part of

HTTP/2.0 stores

in Data field

of DATA frame

(http2.data.data)

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

TIPS #10 USE Wireshark for future protocols.

• HTTP/2.0 also has Server Push feature.

Client does not have to send request

• HTTP/3.0 is now developing.

• Google creates QUIC (Quic UDP Internet Connections)

QUIC behaves as TCP/TLS over UDP layer

QUIC is used in Google services now, and Wireshark also

• Oh all protocols are invisible and

we are going to the dark age of bender specific unknown

protocols by giant venders…

• Don’t worry, Wireshark decodes everything.

• Wireshark is the light for future protocols to the future.

66

 SharkFest ‘16 • Computer History Museum • June 13-16, 2016

Thank you very much for your listening

Use Wireshark for ever !

Thank you !

どうもありがとうございます！

67

